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Abstract: The base-catalyzed reaction of N-acylprolines with trifluoroacetic
anhydride proceeds through mesoionic 1,3-oxazolium-5-olates followed by the
pyrrolidine ring cleavage to afford the 5-trifluoromethyloxazoles in good yields.

We have recently described the reaction of N-acyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylic
acids with trifluoroacetic anhydride (TFAA) to give the 2-triflucromethyltetrahydro-3-benzazepine
derivatives which were formed through mesoionic 1,3-oxazolium-5-olates followed by ring expansion
under the Dakin-West reaction conditions.' This unexpected transformation prompted an examination of
some related a-amino acids under comparable conditions. We report herein on a novel molecular
rearrangement of a series of N-acylprolines. They have been found to undergo the pyrrolidine ring cleavage
and the oxazole formation, introducing a trifluoromethy! group at position 5.
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Thus, the reaction of N-acylprolines 1 with TFAA in the presence of a base results in the formation of
the oxazoles 3 in good yields, after the acid hydrolysis of the resulting trifluoroacetates 2.2 The structure of 3
was determined from spectral3 and analytical data and was subsequently secured by single-crystal X-ray
diffraction analysis (Figure 1a).*®

Reaction variables and several N-acyl derivatives were briefly examined. A base was essential to this
reaction and no reaction takes place in the absence of a base. A combined use of pyridine and a catalytic
amount of 4-dimethylaminopyridine (DMAP) gave a high yield of 3a. A high temperature (80 °C) was
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Table 1. Reactions of N-Acylprolines with TFAA

Starting Product M.p.orb.p./°C
Entry material R (vield, %)* (p/mmHg)°

1 1a But 3a (87) 110 (1)

2 1a But 3a (67)° 110 (1)

3 1b Ph 3b (61) 51-52

4 Ic 4-MeOCH, 3¢ (81) 65-66

5 1d 4CICH, 3d (46) 78-79

6 1e PhCH=CMe 3e (65) 53-54

7 1 2,6-CLCH, 5a 93) 89-91

8 1g 2,4,6-Me,CH, 5b (72) 121-124

a) Isolated yields of pure products. b) B.p. refers to the bath temperature in a 'Kugelrohr’ apparatus.
¢) In the absence of DMAP.
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needed to obtain a high yield of 3a, the lower temperature (50 °C) reducing the yield (25%). The nature of
N-substituents influenced the reaction. N-Acyl derivatives 1a-e, containing pivaloyl, benzoyl, or cinnamoyl
groups, were easily transformed to the oxazoles 3a-¢ in good yields (Table 1). On the other hand, N-formyl-,
N-acetyl-, and N-isobutyrylprolines, bearing a-hydrogens, afforded no oxazole derivative. From the
reactions of 1f and 1g we did not obtain the oxazole derivatives but enol trifluoroacetates 4a and 4b,
respectively, which were isolated as a single isomer. Hydrolyses of 4 gave the trifluoromethyl ketone
hydrates § and the structure of Sa was determined by the X-ray crystallography (Figure 1b).** The 'H NMR
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Figure 1. (a) X-ray structure drawing of 3e; (b) X-ray structure drawing of 5a.
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spectrum in CDCl3 showed it to be a mixture of the hydrate Sa and the trifluoromethyl ketone 6a in about 3 :
1ratio.’ The X-ray analysis indicates that Sa is stabilized by the intramolecular hydrogen bonding between
the hydroxy group and the amide oxygen.

Scheme 1 presents a rationale for the formation of the oxazoles 3. This reaction involves a mesoionic
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Scheme 1. Possible mechanism

1,3-oxazolium-5-olates 7 formed through the cyclodehydration of 1 by TFAA. Intermediate 7 undergoes
trifluoroacetylation followed by decarboxylation to give the enol trifluoroacetate 4, which is isolated in the
reactions of 1f and 1g: a similar mechanism has been postulated in the Dakin-West reaction.%” In theory,
intermediate 4 can exist in four different isomeric forms. The calculation indicates that 4 is the
thermodynamically most favorable of the possible enol forms.® Thus, the orientation of the amide carbonyl
group and the enol double bond in 4 is suited for the further cyclization to the oxazolium salt 8. The
cleavage of pyrrolidine ring in 8 by the nucleophilic attack of triflucroacetate anion would result in the
formation of oxazole derivatives 2. Finally, the hydrolysis of 2 leads to the oxazoles 3.

The work described herein represents a novel rearrangement of N-acylprolines in which a pyrrolidine
ring is cleaved, concomitant with the formation of a oxazole ring. In addition, this reaction is a new facile
synthetic procedure to the oxazole derivatives with a trifluoromethyl group at position 5, making them
attractive in the synthesis of other hn-.tcx'ocyclv.-,s.9 This class of compounds is especially important because
trifluoromethylated heterocycles are compounds of current interest due to their potential biological
applications. 10
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