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Absfruct: The base-catalyzed reaction of N-acylprolines with trifluoroacetic 

anhydride proceeds through mesoionic 1.3-oxaxolium-Solates followed by the 

pynolidine ring cleavage to afford the 5-trifluoromethyloxaxoles in good yields. 

We have recently described the reaction of N-acyl-1,2,3,4-tetrahy~soquinoline-1-carboxylic 

acids with trifluoroacetic anhydride (TFAA) to give the Ztriflu~ethyltetrahydro-fbenzazepine 

derivatives which wete formed through mesoionic 1,3-oxaxolium-5-elates followed by ring expansion 

under the Dakin-West tea&on conditions.’ This unexpected transformation prompted an examination of 

some related a-amino acids under comparable conditions. We report herein on a novel molecular 

rearrangement of a series of N-acylprolines. They have been found to undergo the pyrtolidine ring cleavage 

and the oxaxole formation, introducing a trifluotomethyl group at position 5. 
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Thus, the reaction of N-acylprolines 1 with TFAA in the presence of a base results in the formation of 

the oxaxoles 3 in good yields, after the acid hydrolysis of the resulting trifluoroacetates 2.* The structum of 3 

was determined tiom spectral3 and analytical data and was subsequently secured by single-crystal X-ray 

diffraction analysis (Figme la).4a 

Reaction variables and several N-acyl derivatives were briefly examined. A base was essential to this 

reaction and no reaction takes place in the absence of a base. A combined use of pyridine and a catalytic 

amount of 4-dimethylaminopyrldine @MAP) gave a high yield of 3a. A high temperature (80 “C!) was 
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Table 1. Reactions of N-Acylpmlines with TFAA 

starting Roduct M.p. or b,p. I “C! 

Entry material R (yield, %)’ WmmHg)b 

1 la But 3a (87) 110(l) 

2 la Bu’ 3a (67)C 110(l) 

3 lb Pll 3b (61) 51-52 
4 lc 

4--6H4 * (81) 65-66 

5 Id 4-ClC6H4 3d (46) 78-79 

6 le PhcH=cMc 3e (65) 53-54 
7 If 2’w4c6H3 Sa (93) 89-91 

8 ll! 2&5-Mt3c6H2 s (72) 121-124 

a) Isolated yields of pure products. b) B.p. refers to the bath temperatme in a ‘Kugelrohr’ apparatus. 

c) In the absence of DMAP. 

l&g W 

needed to obtain a high yield of 3a, the lower temperature (50 “C) reducing the yield (25%). The natme of 

N-substituents influenced the reaction. N-Acyl derivatives la-e, containing pivaloyl, benzoyl, or cimuunoyl 

groups, were easily transformed to the oxazoles 3n-e in good yields (Table 1). On the other hand, N-formyl-, 

N-acetyl-, and N-isobutyrylprolines, bearing a-hydrogens, afforded no oxazole derivative. From the 

reactions of If and lg we did not obtain the oxazole derivatives but enol trifluoroace tates 4a and 4b, 

nspectively, which wee isolated as a single isomer. Hydrolyses of 4 gave the tri&oromethyl ketone 

hydrates 5 and the structme of Sa was determined by the X-ray crystallography (Figure lb)pb me ‘H NMR 

(a) 00 
Figure 1. (a) X-ray structure drawing of 3e; (b) X-ray saucture drawing of Sa. 
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specaumin~3showedittobeamix~ofthehydrateSoandthetrifluoromcthylkttont6ainabout3: 

1 ratio.’ The X-my analysis indicates that So is stab%& by the intramolecular hydrogen bonding between 

thehydroxygroupandtheamideoxygen. 

Scheme 1 plw#nts a mtionale for the formation of the oxazoles 3. This reaction involves a mesoionic 

8 c 2 R2=C0CPS 

3 R2=H 

Scheme 1. Possible mechanism 

1,3_oxaxolium-5alates 7 formed tiugh the cyclodehydration of 1 by TPAA. Intermediate 7 undergoes 

tiu~tylation followed by decarboxylation to give the enol trifluomacetate 4, which is isolated in the 

6S7 mactions of If and lg: a similar mechanism has been postulated in the Dakin-West ~tion. In theory, 

intermediate 4 can exist in four different isomexic farms. The calculation indicates that 4 is the 

thermodynamically most favorable of the possible enol forms.* Thus, the orientation of the amide cafbonyl 

gmup and the enol double bond in 4 is suited for the further cyclization to the oxazolium salt 8. The 

cleavage ofpyrrolidine ring in 8 by the nucleophilic attack of uifluotoacetate anion would nsult in the 

formation of oxazole derivatives 2. Pinally, the hydrolysis of 2 leads to the oxazoles 3. 

The wo& described herein represents a novel rearrangement of N-acyl~lines in which a pyrrolidine 

ring is cleaved. concomitant with the formation of a oxazole ring. In addition, this reaction is a new facile 

synthetic pro&me to the oxazole derivatives with a tiuoromethyl group at position 5. making them 

ataactive in the synthesis of other hetemcycle~.~ This class of compounds is qecially important because 

t~Suommethylated heterocycles an compounds of cUrnnt in&zest due to their potential biological 

i3ppliCati~S.10 
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9 10 11 12 
a; -226.01231 a; -225.9675 1 a; -224.54722 a; -220.63954 
b; -192.82779 b; -192.06900 b; -191.12368 b; -187.14364 

a; R=Me. b; R=Ph 

Figure 2. Possible geometries showing heats of formation (kcal mol “) 
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