Unexpected Product from the Dakin-West Reaction of N-Acylprolines using Trifluoroacetic Anhydride: A Novel Access to 5-Trifluoromethyloxazoles

Masami Kawase,^{*a} Hiroshi Miyamae,^b Mariko Narita,^b and Teruo Kurihara^b

^a Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-02, Japan
 ^b Faculty of Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-02, Japan

Key Words: N-acylproline; oxazole; trifluoromethyl; trifluoroacetic anhydride; rearrangement

Abstract: The base-catalyzed reaction of N-acylprolines with trifluoroacetic anhydride proceeds through mesoionic 1,3-oxazolium-5-olates followed by the pyrrolidine ring cleavage to afford the 5-trifluoromethyloxazoles in good yields.

We have recently described the reaction of N-acyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acids with trifluoroacetic anhydride (TFAA) to give the 2-trifluoromethyltetrahydro-3-benzazepine derivatives which were formed through mesoionic 1,3-oxazolium-5-olates followed by ring expansion under the Dakin-West reaction conditions.¹ This unexpected transformation prompted an examination of some related α -amino acids under comparable conditions. We report herein on a novel molecular rearrangement of a series of N-acylprolines. They have been found to undergo the pyrrolidine ring cleavage and the oxazole formation, introducing a trifluoromethyl group at position 5.

Thus, the reaction of N-acylprolines 1 with TFAA in the presence of a base results in the formation of the oxazoles 3 in good yields, after the acid hydrolysis of the resulting trifluoroacetates 2.² The structure of 3 was determined from spectral³ and analytical data and was subsequently secured by single-crystal X-ray diffraction analysis (Figure 1a).^{4a}

Reaction variables and several N-acyl derivatives were briefly examined. A base was essential to this reaction and no reaction takes place in the absence of a base. A combined use of pyridine and a catalytic amount of 4-dimethylaminopyridine (DMAP) gave a high yield of 3a. A high temperature (80 °C) was

Starting			Product	M.p. or b.p. / °C
Entry	material	R	(yield, %) ^a	(p/mmHg) ^b
1	la	Bu ^t	3a (87)	110(1)
2	1a	Bu ^t	3a (67) ^c	110(1)
3	1b	Ph	3b (61)	51-52
4	1c	4-McOC ₆ H ₄	3c (81)	65-66
5	1d	4-CIC ₆ H ₄	3d (46)	78-79
6	1e	PhCH=CMe	3e (65)	53-54
7	lf	2,6-Cl ₂ C ₆ H ₃	5a (93)	89-91
8	1g	2,4,6-Me ₃ C ₆ H ₂	5b (72)	121-124

Table 1. Reactions of N-Acylprolines with TFAA

a) Isolated yields of pure products.b) B.p. refers to the bath temperature in a 'Kugelrohr' apparatus.c) In the absence of DMAP.

needed to obtain a high yield of 3a, the lower temperature (50 °C) reducing the yield (25%). The nature of N-substituents influenced the reaction. N-Acyl derivatives 1a-e, containing pivaloyl, benzoyl, or cinnamoyl groups, were easily transformed to the oxazoles 3a-e in good yields (Table 1). On the other hand, N-formyl-, N-acetyl-, and N-isobutyrylprolines, bearing α -hydrogens, afforded no oxazole derivative. From the reactions of 1f and 1g we did not obtain the oxazole derivatives but enol trifluoroacetates 4a and 4b, respectively, which were isolated as a single isomer. Hydrolyses of 4 gave the trifluoromethyl ketone hydrates 5 and the structure of 5a was determined by the X-ray crystallography (Figure 1b).^{4b} The ¹H NMR

(a) (b) Figure 1. (a) X-ray structure drawing of 3e; (b) X-ray structure drawing of 5a.

spectrum in CDCl₃ showed it to be a mixture of the hydrate 5a and the trifluoromethyl ketone 6a in about 3 : 1 ratio.⁵ The X-ray analysis indicates that 5a is stabilized by the intramolecular hydrogen bonding between the hydroxy group and the amide oxygen.

Scheme 1 presents a rationale for the formation of the oxazoles 3. This reaction involves a mesoionic

Scheme 1. Possible mechanism

1,3-oxazolium-5-olates 7 formed through the cyclodehydration of 1 by TFAA. Intermediate 7 undergoes trifluoroacetylation followed by decarboxylation to give the enol trifluoroacetate 4, which is isolated in the reactions of 1f and 1g: a similar mechanism has been postulated in the Dakin-West reaction.^{6,7} In theory, intermediate 4 can exist in four different isomeric forms. The calculation indicates that 4 is the thermodynamically most favorable of the possible enol forms.⁸ Thus, the orientation of the amide carbonyl group and the enol double bond in 4 is suited for the further cyclization to the oxazolium salt 8. The cleavage of pyrrolidine ring in 8 by the nucleophilic attack of trifluoroacetate anion would result in the formation of oxazole derivatives 2. Finally, the hydrolysis of 2 leads to the oxazoles 3.

The work described herein represents a novel rearrangement of N-acylprolines in which a pyrrolidine ring is cleaved, concomitant with the formation of a oxazole ring. In addition, this reaction is a new facile synthetic procedure to the oxazole derivatives with a trifluoromethyl group at position 5, making them attractive in the synthesis of other heterocycles.⁹ This class of compounds is especially important because trifluoromethylated heterocycles are compounds of current interest due to their potential biological applications.¹⁰

Acknowledgment: The authors are grateful to Miss K. Kobayashi of The Institute of Physical and Chemical Research (RIKEN) for X-ray data collection for compound 3e.

References and Notes

- 1. Kawase, M. J. Chem. Soc., Chem. Commun. 1992, 1076.
- 2. In a typical experiment, TFAA (0.64 ml, 4.5 mmol) was added to a stirred solution of 1a (298.5 mg, 1.5 mmol), pyridine (0.73 ml, 9 mmol), and DMAP (28 mg, 0.23 mmol) in dry benzene (5 ml) at 0 °C under an Ar atmosphere and the mixture was stirred at 25 °C for 3 h, then refluxed for 5 h. The mixture was evaporated in vacuo and the crude trifluoroacetate 2a was taken up in 10% HCl-dioxane (3 : 2, 5 ml) and

the solution was stirred at 60 °C for 3 h. After the usual workup, the crude product was purified by column chromatography on silica gel eluting with EtOAc-hexane (1:4) to give 3a (328.4 mg, 87%).

- 3. For 3a: ¹H NMR (CDCl₃): δ 1.39 (s, 9H), 1.85-1.95 (m, 2H), 2.76 (tq, J=5.9, 1.5 Hz, 2H), 3.21 (s, 1H, D₂O changeable), 3.69 (t, J=5.9 Hz, 2H); ¹³C NMR (CDCl₃): δ 22.76 (t), 28.37 (q), 31.24 (t), 34.05 (s), 61.87 (t), 119.81 (q, J_{C-F}=267.2 Hz), 133.85 (q, ²J_{C-F}=42.4 Hz), 141.57 (q, ³J_{C-F}=2.5 Hz), 172.19 (s); IR (oil): 3375, 1640 cm⁻¹.
- 4. (a) Crystal data for 3e (C₁₆H₁₆F₃NO₂), monoclinic P2₁. a=5.0101 (8), b=8.8904 (9), c=17.361 (2) Å, V=770.9 (6) Å³, B=94.55 (1) °, μ (Cu Kα)=9.388 cm⁻¹ by Enraf-Nonius CAD-4R diffractmeter. Final R value was 0.0899 for 2963 reflections; (b) Crystal data for 5a (C₁₃H₁₂Cl₂F₃NO₃), triclinic PĪ. a=12.492 (15), b=8.046 (8), c=7.811 (6) Å, V=749.7 (13) Å³, α=104.66 (6), B=99.22 (8), γ=87.67 (10) °, μ (Mo Kα)=4.74 cm⁻¹ by Rigaku AFC-5 diffractmeter. Final R value was 0.0904 for 2437 reflections. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- 5. Trifluoro ketones are known to give the corresponding hydrates readily. For a recent review on trifluoro ketones, see Begue, J. P.; Bonnet-Delpon, D. Tetrahedron 1991, 47, 3207.
- 6. Buchanan, G. L. Chem. Soc. Rev. 1988, 17, 91.
- It is known that proline does not undergo the Dakin-West reaction using acetic anhydride; see Israili, Z.
 H.; Smissman, E. E. J. Chem. Eng. Data 1977, 22, 357; Allinger, N. L.; Wang, G. L.; Dewhurst, B. B. J. Org. Chem. 1974, 39, 1730.
- 8. The geometries for the enols (9-12) were estimated by the full geometry optimization in the MNDO method (J. J. P. Stewart, MOPAC QCPE #549) in order to determine the most stable form. Their heats of formation are shown in Figure 2.

Figure 2. Possible geometries showing heats of formation (kcal mol⁻¹)

- For reviews on oxazole chemistry, see Boyd, G. V. Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W. Eds.; Pergamon Press: Oxford, 1984; vol. 6, Part 4B, ch. 18; Turchi, I. J. Chemistry of Heterocyclic Compounds; Wiley: New York, 1986; vol. 45; Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Wasserman, H. H. Ed.; Academic Press: California, 1987; vol. 47, pp. 300-310; for a recent paper, see Aken, K. V.; Hoornaet, G. J. Chem. Soc., Chem. Commun. 1992, 895.
- Silvester, M. J. Aldrichimica Acta 1991, 24, 31; McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 48, 6555.

٢.

(Received in Japan 2 October 1992)